Engineered CRISPR prime editors with compact, untethered reverse transcriptases

Engineered CRISPR prime editors with compact, untethered reverse transcriptases

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, X. et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat. Commun. 13, 1669 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xu, W. et al. A design optimized prime editor with expanded scope and capability in plants. Nat Plants 8, 45–52 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, Y. et al. BE-PIGS: a base-editing tool with deaminases inlaid into Cas9 PI domain significantly expanded the editing scope. Signal Transduct. Target Ther. 4, 36 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Petri, K. et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat. Biotechnol. 40, 189–193 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR–Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gu, J. et al. Substitution of Asp114 or Arg116 in the fingers domain of Moloney murine leukemia virus reverse transcriptase affects interactions with the template-primer resulting in decreased processivity. J. Mol. Biol. 305, 341–359 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Das, D. et al. A directed approach to improving the solubility of Moloney murine leukemia virus reverse transcriptase. Protein Sci. 10, 1936–1941 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Katano, Y. et al. Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system. Biosci. Biotechnol. Biochem. 81, 2339–2345 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cote, M. L. et al. Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase. Virus Res. 134, 186–202 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Das, D. et al. The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure 12, 819–829 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bock, D. et al. In vivo prime editing of a metabolic liver disease in mice. Sci. Transl. Med. 14, eabl9238 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ann Ran, F. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yu, S. F. et al. Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271, 1579–1582 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wohrl, B. M. Structural and functional aspects of foamy virus protease-reverse transcriptase. Viruses 11, 598 (2019).

    PubMed Central 
    Article 

    Google Scholar 

  • Berkhout, B. et al. Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J. Virol. 73, 2365–2375 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, Y. N. et al. Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog. 3, e10 (2007).

    PubMed 
    PubMed Central 
    Article 

    See also  Adrestia Therapeutics — Gene networks to the rescue

    Google Scholar 

  • Mills, D. A. et al. Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J. Bacteriol. 178, 3531–3538 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mohr, S. et al. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA 19, 958–970 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dai, L. et al. ORF-less and reverse-transcriptase-encoding group II introns in archaebacteria, with a pattern of homing into related group II intron ORFs. RNA 9, 14–19 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blocker, F. J. et al. Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase. RNA 11, 14–28 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stamos, J. L. et al. Structure of a thermostable group II intron reverse transcriptase with template-primer and its functional and evolutionary implications. Mol. Cell 68, 926–939 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhao, C. et al. Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat. Struct. Mol. Biol. 23, 558–565 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhao, C. et al. An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA 24, 183–195 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kelley, L. A. et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, B. et al. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat. Biotechnol. 40, 779–786 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Truong, D. J. et al. Development of an intein-mediated split–Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450–6458 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Toro, N. et al. Multiple origins of reverse transcriptases linked to CRISPR–Cas systems. RNA Biol. 16, 1486–1493 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hopp, T. P. et al. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6, 1204–1210 (1988).

    CAS 
    Article 

    Google Scholar 

  • Rohland, N. et al. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gramlich, M. et al. Antisense‐mediated exon skipping: a therapeutic strategy for titin‐based dilated cardiomyopathy. EMBO Mol. Med. 7, 562–576 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grünewald, J. et al. Datasets. Sequence Read Archive (SRA). http://www.ncbi.nlm.nih.gov/bioproject/861237 (2022).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *