A genome and gene catalog of glacier microbiomes

A genome and gene catalog of glacier microbiomes

[ad_1]

  • Zawierucha, K. & Shain, D. H. Disappearing Kilimanjaro snow—are we the last generation to explore equatorial glacier biodiversity? Ecol. Evol. 9, 8911–8918 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).

    Google Scholar 

  • Anesio, A. M., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3, 10 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stibal, M., Sabacka, M. & Zarsky, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774 (2012).

    CAS 

    Google Scholar 

  • Pittino, F. et al. Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability. Ann. Glaciol. 59, 1–9 (2018).

    Google Scholar 

  • Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Yarzábal, L. A., Salazar, L. M. B. & Batista-García, R. A. Climate change, melting cryosphere and frozen pathogens: should we worry…? Environ. Sustain. 4, 489–501 (2021).

    Google Scholar 

  • Knowlton, C., Veerapaneni, R., D’Elia, T. & Rogers, S. O. Microbial analyses of ancient ice core sections from greenland and antarctica. Biology 2, 206–232 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miteva, V. I. & Brenchley, J. E. Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl. Environ. Microbiol. 71, 7806–7818 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, L.-J., Rogers, S. O., Catranis, C. M. & Starmer, W. T. Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92, 286–295 (2000).

    Google Scholar 

  • Christner, B. C., Mosley-Thompson, E., Thompson, L. G. & Reeve, J. N. Bacterial recovery from ancient glacial ice. Environ. Microbiol. 5, 433–436 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Santibanez, P. A. et al. Prokaryotes in the WAIS Divide ice core reflect source and transport changes between Last Glacial Maximum and the early Holocene. Glob. Chang. Biol. 24, 2182–2197 (2018).

    PubMed 

    Google Scholar 

  • Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2, 663–667 (2012).

    Google Scholar 

  • Bibi, S. et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. Int. J. Climatol. 38, e1–e17 (2018).

    Google Scholar 

  • Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    PubMed 

    Google Scholar 

  • Stibal, M. et al. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat. Ecol. Evol. 4, 686–687 (2020).

    PubMed 

    Google Scholar 

  • Souney, J. M. et al. Core handling, transportation and processing for the South Pole ice core (SPICEcore) project. Ann. Glaciol. 62, 118–130 (2021).

    Google Scholar 

  • Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mogrovejo-Arias, D. C., Brill, F. H. H. & Wagner, D. Potentially pathogenic bacteria isolated from diverse habitats in Spitsbergen, Svalbard. Environ. Earth Sci. 79, 109 (2020).

    Google Scholar 

  • Abedon, S. T. & Lejeune, J. T. Why bacteriophage encode exotoxins and other virulence factors. Evol. Bioinform. Online 1, 97–110 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Casacuberta, E. & Gonzalez, J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503–1517 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8, 47 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Royo-Llonch, M. et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat. Microbiol. 6, 1561–1574 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    PubMed Central 

    Google Scholar 

  • Benaud, N. et al. Harnessing long-read amplicon sequencing to uncover NRPS and type I PKS gene sequence diversity in polar desert soils. FEMS Microbiol. Ecol. 95, fiz031 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2019).

    PubMed Central 

    Google Scholar 

  • Vila, E., Hornero-Méndez, D., Azziz, G., Lareo, C. & Saravia, V. Carotenoids from heterotrophic bacteria isolated from Fildes Peninsula, King George Island, Antarctica. Biotechnol. Rep. (Amst). 21, e00306 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moeller, R., Horneck, G., Facius, R. & Stackebrandt, E. Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol. Ecol. 51, 231–236 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Nupur, L. N. U. et al. ProCarDB: a database of bacterial carotenoids. BMC Microbiol. 16, 96–96 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anesio, A. M. & Laybourn-Parry, J. Glaciers and ice sheets as a biome. Trends Ecol. Evol. 27, 219–225 (2012).

    PubMed 

    Google Scholar 

  • Feller, G. Life at low temperatures: is disorder the driving force? Extremophiles 11, 211–216 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Houwenhuyse, S., Macke, E., Reyserhove, L., Bulteel, L. & Decaestecker, E. Back to the future in a petri dish: origin and impact of resurrected microbes in natural populations. Evol. Appl. 11, 29–41 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    See also  Don't Miss out on Jupiter Glow Its Brightest in Virtually 60 Several years

    CAS 
    PubMed 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Nissen, J. N. et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat. Biotechnol. 39, 555–560 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalvari, I. et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46, D335–d342 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–w259 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–d361 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M. & Henrissat, B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 41 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, B., Zheng, D., Jin, Q., Chen, L. & Yang, J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47, D687–D692 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • de Nies, L. et al. PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome 9, 49 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–w87 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).

    PubMed 

    Google Scholar 

  • Tibetan Glacier Genome and Gene catalogue Raw sequence reads. Tibetan Glacier Genome and Gene catalogue. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB12327 (2022).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *