The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize

The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize

  • Food and Agriculture Organization of the United Nations Agriculture Databases; https://www.fao.org/statistics/databases/en/

  • Connor, D. J., Loomis, R. S., Cassman, K. G. & Loomis, R. S. C. E. Crop Ecology: Productivity and Management in Agricultural Systems 2nd edn (Cambridge Univ. Press, 2011).

  • Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pose, D. et al. Identification of the Arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. Plant J. 59, 63–76 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, H. J., Ma, Y. K., Chen, T., Wang, M. & Wang, X. J. PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 40, W22–W28 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, X. et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48, 1233–1241 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bukowski, R. et al. Construction of the third-generation Zea mays haplotype map. Gigascience 7, gix134 (2018).

    Article 

    Google Scholar 

  • Tian, F., Stevens, N. M. & Buckler, E. S. T. Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc. Natl Acad. Sci. USA 106, 9979–9986 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wright, S. I. et al. The effects of artificial selection on the maize genome. Science 308, 1310–1314 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 20, 393–402 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guo, L. et al. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Curr. Biol. 28, 3005–3015 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vigouroux, Y. et al. Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am. J. Bot. 95, 1240–1253 (2008).

    PubMed 
    Article 

    Google Scholar 

  • van Heerwaarden, J. et al. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc. Natl Acad. Sci. USA 108, 1088–1092 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, C. et al. ZmCCT9 enhances maize adaptation to higher latitudes. Proc. Natl Acad. Sci. USA 115, E334–E341 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, N. & Li, Y. Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 33, 23–32 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kuang, H. H. et al. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res. 19, 42–56 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Matsuoka, Y. et al. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl Acad. Sci. USA 99, 6080–6084 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, C. et al. The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize. Mol. Plant 12, 402–409 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sun, S. et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat. Genet. 50, 1289–1295 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Springer, N. M. et al. The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 50, 1282–1288 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, N. et al. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 51, 1052–1059 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, N. et al. Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat. Commun. 8, 1874 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, N. et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet. 10, e1004573 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, B. et al. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 52, 565–571 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Zhang, C. et al. Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theor. Appl. Genet. 130, 1011–1029 (2017).

    See also  The Inflation Reduction Act is the most significant phase against climate change the US has ever taken

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, M. et al. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol. J. 18, 207–221 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, J. et al. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol. 175, 774–785 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, H. et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 45, 43–50 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Marshall, A. et al. Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24, 2262–2278 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, J., Yao, W., Zhu, D., Xie, W. & Zhang, Q. Genetic basis of sRNA quantitative variation analyzed using an experimental population derived from an elite rice hybrid. Elife 4, e04250 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Petsch, K. et al. Novel DICER-LIKE1 siRNAs bypass the requirement for DICER-LIKE4 in maize development. Plant Cell 27, 2163–2177 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nobuta, K. et al. Distinct size distribution of endogeneous siRNAs in maize: evidence from deep sequencing in the mop1-1 mutant. Proc. Natl Acad. Sci. USA 105, 14958–14963 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lunardon, A., Forestan, C., Farinati, S., Axtell, M. J. & Varotto, S. Genome-wide characterization of maize small RNA loci and their regulation in the required to maintain repression6-1 (rmr6-1) mutant and long-term abiotic stresses. Plant Physiol. 170, 1535–1548 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lopez-Gomollon, S. Detecting sRNAs by northern blotting. Methods Mol. Biol. 732, 25–38 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, C. et al. Arabidopsis ARGONAUTE 1 binds chromatin to promote gene transcription in response to hormones and stresses. Dev. Cell 44, 348–361 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Bologna, N. G. & Voinnet, O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65, 473–503 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, H. et al. Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Mol. Plant 10, 414–426 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fu, J. et al. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat. Commun. 4, 2832 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Liu, H. J. et al. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32, 1397–1413 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alves, L. Jr., Niemeier, S., Hauenschild, A., Rehmsmeier, M. & Merkle, T. Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana. Nucleic Acids Res. 37, 4010–4021 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Zhang, H. et al. An asymmetric bulge enhances artificial microRNA-mediated virus resistance. Plant Biotechnol. J. 18, 608–610 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stitzer, M. C., Anderson, S. N., Springer, N. M. & Ross-Ibarra, J. The genomic ecosystem of transposable elements in maize. PloS Genet. 17, e1009768 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y. & Bennetzen, J. L. The paleontology of intergene retrotransposons of maize. Nat. Genet. 20, 43–45 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, H. et al. Enhanced vitamin C production mediated by an ABA-induced PTP-like nucleotidase improves plant drought tolerance in Arabidopsis and maize. Mol. Plant 13, 760–776 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, P. et al. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J. 98, 697–713 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *