Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types

Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types

  • Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lehmann, R. et al. Human organoids: a new dimension in cell biology. Mol. Biol. Cell 30, 1129–1137 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McMahon, A. P. Development of the mammalian kidney. Curr. Top. Dev. Biol. 117, 31–64 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Taguchi, A. & Nishinakamura, R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21, 730–746 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kuraoka, S. et al. PKD1-dependent renal cystogenesis in human induced pluripotent stem cell-derived ureteric bud/collecting duct organoids. J. Am. Soc. Nephrol. 31, 2355–2371 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zeng, Z. et al. Generation of patterned kidney organoids that recapitulate the adult kidney collecting duct system from expandable ureteric bud progenitors. Nat. Commun. 12, 3641 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mae, S. I. et al. Expansion of human ipsc-derived ureteric bud organoids with repeated branching potential. Cell Rep. 32, 107963 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Howden, S. E. et al. Plasticity of distal nephron epithelia from human kidney organoids enables the induction of ureteric tip and stalk. Cell Stem Cell 28, 671–684 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bens, M. et al. Corticosteroid-dependent sodium transport in a novel immortalized mouse collecting duct principal cell line. J. Am. Soc. Nephrol. 10, 923–934 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Prie, D. et al. Role of adenosine on glucagon-induced cAMP in a human cortical collecting duct cell line. Kidney Int. 47, 1310–1318 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fejes-Toth, G. & Naray-Fejes-Toth, A. Differentiation of renal beta-intercalated cells to alpha-intercalated and principal cells in culture. Proc. Natl Acad. Sci. USA 89, 5487–5491 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Qiao, J., Sakurai, H. & Nigam, S. K. Branching morphogenesis independent of mesenchymal–epithelial contact in the developing kidney. Proc. Natl Acad. Sci. USA 96, 7330–7335 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grote, D., Souabni, A., Busslinger, M. & Bouchard, M. Pax 2/8-regulated Gata3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133, 53–61 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barak, H., Rosenfelder, L., Schultheiss, T. M. & Reshef, R. Cell fate specification along the anterior-posterior axis of the intermediate mesoderm. Dev. Dyn. 232, 901–914 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ornitz, D. M. & Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Perantoni, A. O. et al. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132, 3859–3871 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Warga, R. M., Mueller, R. L., Ho, R. K. & Kane, D. A. Zebrafish Tbx16 regulates intermediate mesoderm cell fate by attenuating Fgf activity. Dev. Biol. 383, 75–89 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mae, S. I. et al. Generation of branching ureteric bud tissues from human pluripotent stem cells. Biochem. Biophys. Res. Commun. 495, 954–961 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bohnenpoll, T. et al. Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev. Biol. 380, 25–36 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Attia, L., Schneider, J., Yelin, R. & Schultheiss, T. M. Collective cell migration of the nephric duct requires FGF signaling. Dev. Dyn. 244, 157–167 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Atsuta, Y. & Takahashi, Y. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis. Development 142, 2329–2337 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sanchez-Ferras, O. et al. A coordinated progression of progenitor cell states initiates urinary tract development. Nat. Commun. 12, 2627 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pohl, M., Stuart, R. O., Sakurai, H. & Nigam, S. K. Branching morphogenesis during kidney development. Annu. Rev. Physiol. 62, 595–620 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yuri, S., Nishikawa, M., Yanagawa, N., Jo, O. D. & Yanagawa, N. In vitro propagation and branching morphogenesis from single ureteric bud cells. Stem Cell Rep. 8, 401–416 (2017).

    See also  Sound pollution messes with beluga whales' journey plans

    CAS 
    Article 

    Google Scholar 

  • Vega, Q. C., Worby, C. A., Lechner, M. S., Dixon, J. E. & Dressler, G. R. Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc. Natl Acad. Sci. USA 93, 10657–10661 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Michos, O. et al. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 6, e1000809 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lu, B. C. et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat. Genet. 41, 1295–1302 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bush, K. T. et al. TGF-β superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev. Biol. 266, 285–298 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maeshima, A., Vaughn, D. A., Choi, Y. & Nigam, S. K. Activin A is an endogenous inhibitor of ureteric bud outgrowth from the Wolffian duct. Dev. Biol. 295, 473–485 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Michos, O. et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134, 2397–2405 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chi, X. et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell 17, 199–209 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Costantini, F. GDNF/Ret signaling and renal branching morphogenesis: from mesenchymal signals to epithelial cell behaviors. Organogenesis 6, 252–262 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tsujimoto, H. et al. A modular differentiation system maps multiple human kidney lineages from pluripotent stem cells. Cell Rep. 31, 107476 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Uchimura, K., Wu, H., Yoshimura, Y. & Humphreys, B. D. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Rep. 33, 108514 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Unbekandt, M. & Davies, J. A. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 77, 407–416 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Preprint at https://www.biorxiv.org/content/10.1101/2021.07.28.454201v1 (2021).

  • Kleyman, T. R. & Cragoe, E. J. Jr. Amiloride and its analogs as tools in the study of ion transport. J. Membr. Biol. 105, 1–21 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, L., Chou, C. L. & Knepper, M. A. A comprehensive map of mRNAs and their isoforms across All 14 renal tubule segments of mouse. J. Am. Soc. Nephrol. 32, 897–912 (2021).

  • Werth, M. et al. Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts. eLife 6, e24265 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blomqvist, S. R. et al. Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J. Clin. Invest. 113, 1560–1570 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Toka, H. R., Toka, O., Hariri, A. & Nguyen, H. T. Congenital anomalies of kidney and urinary tract. Semin. Nephrol. 30, 374–386 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Kuure, S. & Sariola, H. Mouse models of congenital kidney anomalies. Adv. Exp. Med. Biol. 1236, 109–136 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shah, M. M. et al. The instructive role of metanephric mesenchyme in ureteric bud patterning, sculpting, and maturation and its potential ability to buffer ureteric bud branching defects. Am. J. Physiol. Renal Physiol. 297, F1330–F1341 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schwartz, G. J. et al. Acid incubation reverses the polarity of intercalated cell transporters, an effect mediated by hensin. J. Clin. Invest. 109, 89–99 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schwartz, G. J., Barasch, J. & Al-Awqati, Q. Plasticity of functional epithelial polarity. Nature 318, 368–371 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Christensen, B. M. et al. Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am. J. Physiol. Cell Physiol. 286, C952–C964 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davies, J. A., Unbekandt, M., Ineson, J., Lusis, M. & Little, M. H. Dissociation of embryonic kidney followed by re-aggregation as a method for chimeric analysis. Methods Mol. Biol. 886, 135–146 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *